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Abstract— 6-DoF grasp detection of small-scale grasps is
crucial for robots to perform specific tasks. This paper focuses
on enhancing the recognition capability of small-scale grasping,
aiming to improve the overall accuracy of grasping prediction
results and the generalization ability of the network. We
propose an enhanced receptive field method that includes a
multi-radii cylinder grouping module and a passive attention
module. This method enhances the receptive field area within
the graspable space and strengthens the learning of graspable
features. Additionally, we design a graspable balance sampling
module based on a 3D segmentation network, which enables the
network to focus on features of small objects, thereby improving
the recognition capability of small-scale grasping. Our network
achieves state-of-the-art performance on the GraspNet-1Billion
dataset, with an overall improvement of approximately 10%
in average precision@k (AP). Furthermore, we deployed our
grasp detection model on pybullet grasping platform and in
real-world scenarios, which validates the effectiveness of our
method.

I. INTRODUCTION

In recent years, grasp tasks for robotic arms have attracted
significant attention in the fields of computer vision and deep
learning [1]. In the execution of grasping tasks by robots,
grasp detection serves as a fundamental task, providing the
robot with perceptual capabilities for the scene. The goal
of grasp detection is, given a scene containing objects,
to identify a set of grasp configurations (including grasp
point locations, joint poses, etc.) where the robotic hand,
when closed at that configuration, can robustly grasp the
corresponding object. Traditional grasp detection methods
are primarily model-based [2]. These methods generate mul-
tiple grasp poses satisfying stability conditions based on
the 3D model of the object. Subsequently, they calculate
grasp poses satisfying stability conditions after coordinate
transformations based on the actual pose of objects in the
scene, thereby completing the grasping process. However,
this approach heavily relies on the accuracy of object pose
estimation in the scene. With the advancement of deep
learning technology and the reduction in the cost of depth-
sensing devices like Kinect and RealSense, data-driven grasp
detection methods leveraging deep learning have steadily
gained popularity [3].
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Fig. 1. We categorize small-scale grasping into two classes. The first class
involves grasping small parts of medium to large objects on the tabletop.
The second class pertains to grasping small objects at the tabletop level.

Deep learning-based grasping can be categorized into
planar grasping and 6-Degree-of-Freedom (6-DoF) grasping
[1]. Research on planar grasping detection primarily utilizes
RGB or depth maps (RGB-D) as input and predicts a set
of rotated bounding boxes to represent the grasping poses
[4], [5], [6], [7], [8]. Due to the significant limitation of
planar grasping, which confines the grasping poses to vertical
motions from top to bottom, this method faces challenges
when operating in complex real-world scenarios. 6-DoF
grasping, designed for more versatile scenarios, offers greater
flexibility compared to planar grasping. 6-DoF grasping
detection networks leveraging deep learning technologies can
predict the 6 degrees of freedom of the grasping pose, along
with the opening width of the two-finger gripper. Earlier
methods often employed a two-step sampling and evaluation
approach, such as GPD [9] and PointnetGPD [10]. Due to the
typically low quality of sampled results, a large number of
samples need to be evaluated, leading to considerable time
consumption. With the development of grasping detection
datasets, end-to-end networks are easier to design and can
fully exploit the information inherent in the data. Fang et
al. [11] proposed the GraspNet-1Billion grasping detection
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dataset, which has spurred various 6-DoF grasping detection
research [12], [13], [14], [15]. However, previous methods
still have deficiencies in detecting small-scale grasps, Fig.1
illustrates the concept of small-scale grasping. The uneven
distribution of grasp pose samples across different scales in
the dataset leads to the deteriorated recognition performance
for small-scale grasps [15], thereby affecting the overall
performance of the detection network. Although GSNet [14]
annotates the feasible grasp space, directly sampling in this
space may easily overlook features beneficial for regressing
small-scale grasps. Similarly, subsequent parts using single-
scale cylinder grouping may encounter similar issues. This
issue hinders the smooth execution of task-oriented grasping
operations by robots.

In this paper, we present a novel 6-DoF grasp detec-
tion network. Firstly, we propose enhanced receptive field
method, which use Multi-radii Cylinder Grouping (MrCG)
module to increase the receptive field area in the gras-
pable space, and use Passive Attention (PA) module to
enhance the sampled features. This enhancement facilitates
better perception of fine details in small and medium-to-
large objects. The feature based on graspable points also
contributes to improved guidance for grasp pose prediction.
Secondly, we introduce an 3D segmentation network based
graspable balance sampling module. This module utilizes a
pre-trained point cloud segmentation network to obtain the
category of each point. Subsequently, it performs balanced
sampling of graspable points learned by the network on
each object, ensuring an equal number of sampled points
for each object, therefore, small objects receive adequate
attention from the model. Leveraging the 3D segmentation
network, this method provides a solution for more advanced
grasp tasks. Our approach outperforms previous state-of-the-
art methods by 10% in AP on the GraspNet-1Billion dataset.
Furthermore, in terms of the evaluation benchmark based on
grasp scale, our method surpasses other approaches. Finally,
we construct a 6-DoF grasp platform using pybullet tools and
real-world robotic arm to conduct grasp tests on our detection
network. Experimental results demonstrate the precision of
our method in accomplishing 6-DoF grasp tasks in clutter
scenes. Our contribution can be summarized as follows:

(1) We propose a enhanced receptive field method, which
increases the model’s receptive field area, enhancing the
perception of small-scale graspable features.

(2) We propose an 3D segmentation network based gras-
pable balance sampling method. This method improves
the grasp detection network’s perception of fine details
in small and medium-to-large objects. Leveraging an
segmentation network, this method provides a solution
for more advanced grasp tasks.

(3) We validate our 6-DoF grasp detection method on
the pybullet platform and real-word system. The ex-
periments demonstrate that our method can accurately
perform 6-DoF grasp tasks in clutter scenes.

II. RELATED WORK

Our focus is primarily on reviewing 6-DoF grasp detection
methods based on deep learning. These methods can be
broadly categorized into two types: the first category involves
sampling and evaluation-based methods, while the second
category comprises end-to-end network methods.

Sampling and evaluation-based methods. These meth-
ods initially generate multiple grasping poses for a given
scene. Subsequently, evaluate the sample according to a qual-
ity estimation function, fulfilled by a deep neural network
[16], [17], [18], [9], [10]. Some methods further employ
optimization-based approaches to refine the samples and
generate higher-quality grasp poses [19], [20], [21], [22].
A major drawback of sampling and evaluation methods is
the need to strike a balance between computation time and
the quantity of generated grasp poses. As a result, these
methods typically require several seconds to run and can
only generate dozens of grasp poses for a single scene. With
the development of grasp detection datasets, the advantages
of end-to-end networks have gradually become evident. The
increased availability of data allows for leveraging the power
of representation learning of end-to-end networks, which are
easy to design, effectively utilize the information present in
the data itself, and exhibit fast inference speeds.

End-to-end network methods. These methods can di-
rectly regress grasping poses on the scene. Early literatures
use RGB-D inputs to generate grasp poses [12], [23], [24].
Fang et al. [11] introduced a large-scale 6-DoF grasp dataset
and proposed an inference network based on point cloud deep
learning to regress dense grasp poses on the scene. Wang et
al. [14] presented an evaluation method based on “graspness”
to learn graspable regions. Ma et al. [15] investigated the
issue of grasp scale imbalance in the GraspNet-1Billion
dataset, identifying problems with the annotated grasp scales
and proposing solutions. Breyer et al. [25] introduced a Vol-
ume Grasping Network (VGN), which takes the Truncated
Signed Distance Function (TSDF) representation of the scene
as input and outputs predicted grasp quality, fixture direction,
and opening width for each voxel in the queried 3D volume.
Dai et al. [26] proposed a 6-DoF grasp detection network,
GraspNeRF, based on multi-view RGB inputs, addressing
the problem of 6-DoF grasp detection for transparent and
reflective objects.

However, grasp detection still faces challenges in terms
of generalization and precision. Additionally, the detection
capabilities for fine details in medium-to-large objects and
small objects remain limited, leading to poor grasp pose
availability. These challenges impede task-oriented grasping
research.

III. METHOD

In this section, we first briefly introduce the pipeline
overview of grasp detection in clutter with enhanced re-
ceptive field and graspable balance sampling, as shown in
the Fig.2. Then, we will focus on introducing our enhanced
receptive field method and discuss two constituent modules:



Fig. 2. Pipeline. The network initially generates multiple features through the backbone, followed by the graspable predictor predicting points with high
graspness. The graspable balance sampling module has two modes: during training, it directly uses the farthest point sampling without employing the
guidance of pre-trained segmentation model features. The model-guided sampling is utilized only during inference. The features are then fed into the
ApproachNet to select the optimal grasp views, which is subsequently input into our enhanced receptive field for cylinder grouping. Finally, the input is
processed by SWADNet to output dense grasp poses.

multi-radii cylinder grouping module and the passive atten-
tion module. Finally, we will present the graspable balance
sampling module based on a pre-trained segmentation net-
work, which exhibits two different forms during training and
inference.

A. Pipeline Overview

Our grasp detection network drew inspiration from [14],
where they framed the grasping problem as a Bayesian
problem involving the localization of grasp points and how to
grasp, X, Y, Z represent the grasp coordinates, V represents
the approach vector, R represents the grasp rotation angle, D
represents the grasp depth, and W represents the width of the
gripper opening. which is illustrated in Fig.3. X, Y, Z, and V
represent where to grasp, while R, D, and W represent how
to grasp, as illustrated in the formula:

P(Grasp) = P(R,D,W |X ,Y,Z,V )P(X ,Y,Z,V ) (1)

We believe that learning based on graspable regions can
enhance the accuracy of robotic grasp recognition. Initially,
it is necessary to annotate spatial-level grasp ability in scenes
of the dataset. Here, we briefly introduce the point-wise
graspness score denoted as s̃P

i . This score involves sampling
multiple grasp poses based on points in the scene, followed
by an evaluation using force analysis conditions [27], [7]
and scoring as qi, j

k , and 1(·) is used to predict whether
any grasp pose in space is valid. Grasps with collisions are
filtered out. Indices i and j represent the point and approach
vector, respectively. Index k represents the grasp candidate
Gi, j, L denotes the number of grasp candidates, c is a scoring
threshold, and ci, j

k represents the collision label for grasps,
V represents the numbers of view, the simplified version of

Fig. 3. Grasp representation and gripper coordinate system.

the formula is as follows:

s̃p
i =

∑
V
j=1 ∑

L
k=1 1(qi, j

k > c) ·1(ci, j
k )

∑
V
j=1 |Gi, j|

, i = 1, . . . ,N (2)

Our innovation lies in proposing two methods to enhance
the perceptual capabilities of small-scale grasping in the gras-
pable space, as Fig.2 shows. Firstly, during the training phase
of the network, we modify the cylinder grouping by using
multiple cylinders to sample features for a single graspable
point. We believe this method can yield a more powerful
receptive field, reinforcing the accuracy of graspable point
prediction in the earlier stages. Secondly, in the pure infer-
ence phase, we utilize a pre-trained point cloud segmentation
network to guide the scene-level graspable point sampling,
ensuring a balanced collection of graspable points on objects.
Finally, our network can estimate denser grasp poses on
the scene, where information about small-scale grasps may



Fig. 4. Schematic diagram of the cylinder grouping module. On the left
is the conventional single-radii module, and on the right is our multi-radii
module.

provide clues for future higher-level operations. Below, we
will focus on elaborating the details of our methods.

B. Enhanced Receptive Field

As shown in the Fig.4, previous works often used refined
sampling points as the centers when performing cylinder
grouping, setting a fixed radii for cylinder grouping [11],
[14]. The consequence of this approach is a severe limitation
on the receptive field area, leading to the failure of deep
neural networks to learn the features of small parts of
medium-to-large objects and grasp points of small-sized
objects in clutter. To enhance the predictive capability for
small-scale grasps and improve the network’s regression
performance, the network needs to consider more detailed
geometric information. In this paper, we utilize the cylinder
grouping method and enhance the receptive field after grasp
sampling. as shown in the formula:

Cq = {vi j|∥pi j− pi jk∥ ≤ rq}, q = 1, . . . ,4. (3)

Where Cq represents the result of a single cylinder grouping.
This method clusters by limiting the radii rq. The key
difference from previous work lies in our use of four different
radii. Meanwhile, the radii of these four sampled cylinders
uniformly increase within the maximum width of the gripper
of the manipulator. Finally, the multi-radii clustering groups
are processed with :

C =Concat{C1,C2,C3,C4}. (4)

Simultaneously, this module requires a passive attention
module to guide the fused features, as shown in the Fig.5.
This module is trained using features sampled from the grasp
scene. The reason for incorporating this module may be the
introduction of noise due to the increased receptive field. We
believe that performing multi-scale grouping on the basis of
graspable scenes can strengthen the predictive capabilities
of the grasp network and improve its generalization per-
formance. Although an increased receptive field may lead
to noise perception, the robustness of the network against
interference is enhanced in graspable scenes, as the graspness
score in these scenes is continuous. This approach deepens
the network’s understanding of scene details, allowing for
a comprehensive perception of geometric features in small
parts.

C. Graspable Balance Sampling

Previous research utilized a point cloud segmentation
network to fully leverage the capabilities of farthest point

Fig. 5. On the left is our designed enhanced receptive field method. On
the right is the pipeline of our passive attention module.

sampling (FPS), ensuring an equal number of points are
sampled on each object [15]. However, they did not con-
duct sampling under conditions that reasonably position the
grasping space. This approach fails to guarantee that the
sampled points do not contain excessive noise, which may
hinder the overall grasp prediction performance, resulting in
the prediction of low-quality grasps.

Algorithm 1: Balanced Sampling in the Graspable
Space

Input : N points
Output: M points

Nps←M/idx
for j← 1 to idx do

if Ng = 0 then
Use FPS on the object points;

else if Ng < Nps then
Sample all graspable points on the object,

then supplement with FPS other points on
the object;

else
Use FPS on the object graspable points;

end
end

To address this issue, we propose an 3D segmentation
network based graspable sampling method, which use GBS
module for inference. During the grasp pose inference phase,
we utilize a pre-trained lightweight point cloud segmenta-
tion network [28]. Due to segmentation, we can effectively
identify the class ownership of the point cloud in the scene,
enabling us to commence balanced sampling. The details of
our algorithm are described in Algorithm 1. Point clouds
are acquired from both graspable scenes and original scenes.
Our goal is to sample more graspable points as inputs for our
network. However, on certain objects, it may be challenging
to predict enough graspable points. Firstly, The number of
grasp points needed for each object is calculated. Then, we
set up three sampling scenarios. In the first scenario, when



TABLE I
ABLATION STUDY OF THE PROPOSED MODULES RESULTS ON REALSENSE D435

Model Seen Similar Novel
AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

w/o PA 73.46 85.13 68.33 64.21 77.02 56.38 26.63 33.19 14.04
w/o MrCG 69.92 81.51 64.27 60.99 73.93 52.22 25.70 32.13 13.67

Ours 74.33 85.77 63.89 64.36 76.76 55.25 27.56 34.09 20.23

there are no graspable points on the object, we perform
FPS on the original point cloud in the scene. In the second
scenario, if the number of graspable points on the object is
less than the required sampling points, all graspable points
on the object are sampled first, and then FPS is performed on
the remaining points. In the third scenario, when the number
of graspable points on the object meets the sampling point
requirement, FPS is directly performed on the graspable
points of the object. Simultaneously, our method can more
efficiently regress semantic-based grasp poses in everyday
usage scenarios. This approach provides rich visual clues
for more advanced task operations.

IV. EXPERIMENTS
A. Implementation Details

Benchmark dataset and metric. Our network is trained
and tested on the GraspNet-1Billion dataset [11], which in-
cludes 190 scenes. Each scene contains information captured
from 256 viewpoints, and dense grasp poses are annotated
for each scene. The test set is divided into three categories
based on difficulty: seen, similar, and novel. We employ two
evaluation methods to assess our network. Firstly, we use
precision@k as our evaluation metric, which measures the
precision of the top k-ranked grasps. APµ represents the
average precision@k under a given friction coefficient µ. This
evaluation method utilizes dynamic force closure analysis,
which aligns better with real-world grasp success conditions.
Secondly, we aim to validate that our network contributes to
improving the recognition performance of small-scale grasps.
We adopt the method proposed in [15], which defines the
grasp scale as the gripper’s opening width and categorizes
it into three classes: widths in 0cm-4cm, 4cm-7cm, and
7cm-10cm as small-scale, medium-scale, and large-scale.
Following the same dynamic force closure analysis, we
evaluate the scene’s APS, APM , and APL.

Network Implementations. Our network implementa-
tions involve the use of 4D convolutions [29] in the back-
bone to extract and learn features. The output features are
increased to 512 channels. The graspable predictor in our
network employs MLP for predicting the graspable posi-
tions. The shape of the MLP for learning grasp points is
(512, 3), and for learning viewpoints, it is (512, 3). In the
training phase for grasp point sampling, FPS is directly
used in the graspable space, while in the inference phase,
our segmentation network based balance graspable sampling
method is employed for sampling. In the enhanced receptive
field stage, we perform multi-scale cylinder sampling using
the sampled points and features, with four different radii
(0.0125m, 0.025m, 0.0375m, 0.05m), then concatenate the

TABLE II
ABLATION STUDY OF THE PROPOSED MODULES IN SMALL SCALE

GRASPING RESULTS ON REALSENSE D435

Model Seen Similar Novel
GSNet 20.07 6.75 9.59

Ma et al. 18.29 10.03 9.29
w/o PA 22.11 8.82 11.36

w/o MrCG 21.22 7.64 10.76
Ours 23.01 8.89 11.33

Ours + GBS 23.67 9.21 11.38

features of the four groups and pass them through a MLP
with a shape of (1024, 512). In the PA module, the shape of
the MLP is (512, 512). SWADNet is used for yielding final
grasp rotation angles and grasp depth, and the shapes of the
two MLPs inside it are (512, 256) and (256, 48).

Training and Inference. Our model is implemented with
PyTorch and trained on one NVIDIA Tesla V100 GPU for
13 epochs with Adam optimizer [30] and the batch size of 4.
The learning rate is 0.001 at the first epoch, and multiplied
by 0.95 every one epoch. The network takes about 2 day to
converge. In inference with collision detection, we only use
one GPU for prediction.

B. Ablation Study

In this section, we primarily validate the effectiveness
of our proposed MrCG and PA modules on the GraspNet-
1Billion dataset [11]. Initially, we employed the benchmarks
[11] to evaluate these modules. As shown in the Table I, the
MrCG module achieved a significant improvement in most
evaluation metrics. Moreover, when MrCG and PA module
were used in combination, there was a notable enhancement
in the most stringent evaluation metric, AP0.4 by novel. This
experiment demonstrates that our approach comprehensively
improves grasp detection accuracy and exhibits certain gen-
eralization performance improvements compared to previous
methods.

Secondly, our approach focuses on enhancing the recog-
nition capability for small-scale grasps. We utilized [15] to
propose an evaluation standard tailored to grasp scales to
assess the model’s ability to recognize small-scale grasps.
We evaluated the effectiveness of the PA and MrCG modules
in improving small-scale grasp recognition. Simultaneously,
we assessed the effectiveness of using the GBS module for
inference on small-scale grasps. The experiments indicate
that there is a certain effect when using the GBS module
for grasping. As shown in Table II, the MrCG module
contributes the most, and compared to previous methods,
we achieved state-of-the-art performance in the seen objects



TABLE III
ABLATION STUDY IN FULL SCALE GRASPING RESULTS ON REALSENSE D435

Model Seen Similar Novel
APS APM APL Mean APS APM APL Mean APS APM APL Mean

GSNet 20.07 65.11 72.41 52.53 6.75 50.51 64.72 40.66 9.59 24.20 26.25 20.01
Ma et al. 18.29 52.6 64.34 45.08 10.03 42.77 57.09 36.63 9.29 18.74 24.36 17.46

Ours 23.01 67.67 76.95 55.88 8.89 53.88 67.16 43.31 11.33 25.58 27.44 21.45
Ours + GBS 23.67 67.54 78.53 56.58 9.21 54.39 68.83 44.14 11.38 26.17 28.20 21.92

TABLE IV
GRASPNET-1BILLION EVALUATION RESULTS ON REALSENSE D435

Model Seen Similar Novel
AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

GPD 22.87 28.53 12.84 21.33 27.83 9.64 8.24 8.89 2.67
PointnetGPD 25.96 33.01 15.37 22.68 29.15 10.76 9.23 9.89 2.74

GraspNet-baseline 27.56 33.43 16.95 26.11 34.18 14.23 10.55 11.25 3.98
Gou et al. 27.98 33.47 17.75 27.23 36.34 15.60 12.25 12.45 5.62

GSNet 67.12 78.46 60.90 54.81 66.72 46.17 24.31 30.52 14.23
Ma et al. 63.83 74.25 58.66 58.46 70.05 51.32 24.63 31.05 12.85

Ours 74.33 85.77 63.89 64.36 76.76 55.25 27.56 34.09 20.23

and novel objects tests but slightly lower results in similar,
possibly due to the use of cost-sensitive learning in [15],
[31] approach. They designed a special loss function for
weighting the errors of samples at different grasp scales,
based on the frequency of grasp scale categories in the
dataset.

Although our method focuses on improving the detection
capability of small-scale grasps, our approach outperforms
previous methods in grasp detection across all scales, as
shown in Table III, this improvement is particularly signifi-
cant when we employ GBS for grasp pose inference.

C. Comparing with Representative Methods

We conducted comparisons with representative methods
on the GraspNet-1Billion dataset. Methods utilizing point
cloud input generally outperform those using RGB images,
and our focus was on comparing with methods which take
point cloud as input. We followed the testing methodology
outlined in [11], conducting tests on three object categories.
In our model, along with [14], and [15], we utilized collision
detection for final predictions to achieve better results. The
results of our comparative evaluation are reported in Table
IV, We present only the RealSense section of the dataset
because previous work has shown that training with Kinect
data under the same network architecture results in subopti-
mal inference performance [11], whereas data collected using
a RealSense camera yields better detection outcomes.

Our method achieved state-of-the-art performance com-
pared to previous approaches. Using the FPS mothod for
inference, our network showed an improvement of approx-
imately 10% in AP metrics compared to previous methods.
Notably, in the most challenging novel scenarios, our net-
work’s performance improved by 9.6% compared to previous
methods.

D. PyBullet Grasping Experiment

A platform for testing the grasping capability of small
objects was established based on the pybullet robot tools

TABLE V
TEST OBJECTS LIST IN YCB DATASET

Objects categories IDs

Small 11, 12, 31, 37, 38, 72-i,
72-d, 72-f, 73-c

Medium to large 4, 6, 10, 13, 16, 19, 21, 35

Fig. 6. We divided the scenes into two categories: the left category is small
scale objects scene, and the right category is mixed scale objects scene.

[32]. Here are the details of our implementation. The Franka
Panda gripper was utilized for grasping, aiming to validate
the algorithm’s effectiveness while conserving computational
resources. To simulate the working space of a real ma-
nipulator, we filtered out grasping poses with an angle
exceeding a threshold with the world coordinate system’s
Z-axis [33]. During the grasping process, the gripper was
initially positioned to a pre-grasping pose, with the grasping
pose set along the object’s approach vector. When executing
the grasp, the gripper moved along the approach vector. A
successful grasp was defined as holding the object, moving
to the pre-grasping position, and maintaining stability for a
certain duration.

17 models are selected from the YCB dataset [34] and
divided them into two categories, as shown in Table V, one
for objects suitable for small-scale grasping poses, and the
other for objects suitable for medium to large-scale grasping
poses. We designed two types of experimental scenes based



TABLE VI
PYBULLET GRASPING RESULTS IN CLUTTERED SCENES

Model Small Scale objects Scenes SR Mixed Scale objects Scenes SR
GSNet[14] 0.86 0.84

Ours 0.95 0.87

Fig. 7. Robot and object settings in real-world experiment: the blue box is
used for testing small-scale grasps, while the red box contains objects for
testing medium to large-scale grasps.

on object classification. As shown in Fig.6, the first type of
scene contains only six small-scale objects. In the second
type of scene, we randomly select six objects from the
already chosen models to compose a new scene for grasping
experiments. We refer to such scenes as mixed-scale objects
scenes. It is worth mentioning that the objects in our scenes
are randomly placed and cluttered, rather than being isolated.

As shown in Table VI, we conducted comparative ex-
periments with the state-of-the-art methods in our pybullet
environment, and tested our proposed model in two types
of scenes, The scene completion rate of all our grasping
tests is 1. Firstly, In the small-scale objects scenes, ours
model attempted 63 grasps in total, achieving successful
grasps 60 times, resulting in success rate (SR) of 0.95. GSNet
attempted 70 grasps in total, achieving successful grasps 60
times, resulting in SR of 0.86. Our model gains an almost
10% improvement compared to GSNet [14]. Secondly, for
mixed-scale objects scenes, we attempted 107 grasps in
total, achieving successful grasps 90 times, resulting in
SR of 0.87. GSNet [14] attempted 107 grasps in total,
achieving successful grasps 90 times, resulting in success
rate (SR) of 0.84. This experimental results validates that
our method enhances the recognition capability of deep
learning networks for small-scale grasping in clutter scenes,
while also effectively addressing medium to large scale
grasping recognition. Compared to previous methods, our
model has achieved notable improvements in understanding
objects grasping.

E. Real-world Grasping Experiment

To verify the effectiveness of our grasp detection method
in the real-world, we set up a physical scenario for grasping

Fig. 8. Failure cases in real-word experiment

experiments. As shown in Fig.7, our grasping platform con-
sists of an AUBO-i5 collaborative robot, a RealSense camera,
a 2-Fingered Modular Changing Hand, and two categories
of objects to be grasped. The grasping strategy and object
deployment are similar to the simulation experiments, mainly
testing our method’s capability in small-scale and full-scale
grasping. It is worth mentioning that in the experiments
testing small-scale grasping ability, we selected some tools
frequently used by humans in daily life. Evaluating our
method on these objects is crucial because it needs to provide
a foundation for generalized robotic manipulations in the
future.

Our SR is 0.83 for small-scale grasping and 0.91 for
mixed-scale grasping. This result is close to our success rate
in simulation because the training datasets [11] was collected
from real-world. However, it is challenging to capture the
complete depth for flat objects. As shown in the Fig.8, when
the grasp detection performance is less than optimal, our
experimental method tends to choose some noisy poses. In
such cases, using the highest grasp score is not suitable. One
possible solution is to use image based instance segmentation
methods to filter the grasp poses.

V. CONCLUSIONS

In this paper, we propose an enhanced receptive field
method, which increases the model’s receptive field based
on graspable space. This modification allows the model to
pay more attention to subtle features on objects. Additionally,
we propose a segmentation network based graspable balance
sampling method. This method utilizes a point cloud segmen-
tation model to extract points belonging to the grasped ob-
ject, effectively filtering out noise. Graspable points on each
object are uniformly sampled, ensuring that features of small
objects are not overlooked and enhancing the recognition
capability for small-scale grasping. The segmentation model
also provides a solution for semantic grasping. We conducted
extensive experiments to evaluate our proposed methods. The
accuracy tests of the grasping detection network demonstrate
that, compared to previous methods, our method improves
the recognition ability for small-scale grasping at the visual
level, enhancing overall network generalization and accuracy.
Furthermore, objects grasping experiments confirm that our



grasping detection network can predict effective grasping
poses. In the future, our work can provide grasp perception
capabilities for task-oriented robotic manipulation.
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